Login / Signup

Exploratory use of romosozumab for osteoporosis in a patient with Hajdu-Cheney syndrome: a case report.

Kyoung Jin KimNamki HongSeunghyun LeeS ShinYumie Rhee
Published in: Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA (2023)
Hajdu-Cheney syndrome (HCS) is an inherited skeletal disorder caused by mutations in the Notch homolog protein 2 gene (NOTCH2). Treatment of this rare disease is challenging because there are no established guidelines worldwide. Previous case reports using bisphosphonates, denosumab, or teriparatide suggested that curative treatment for HCS did not exist yet in terms of preventing the disease progression. Therefore, the efficacy of romosozumab for osteoporosis in patients with HCS needs to be evaluated. Herein, we report the case of a 43-year-old woman who had progressive acro-osteolysis and repeated fractures since the age of 29 years. Next-generation sequencing confirmed HCS with a mutation at nucleotide 6758G>A, leading to Trp2253Ter replacement in NOTCH2. Romosozumab treatment was initiated because she had already received bisphosphonate for more than 10 years at other hospitals. After 1 year of romosozumab treatment, the bone mineral density (BMD) increased by 10.2%, 6.3%, and 1.3%, with Z scores of -2.9, -1.6, and -1.2 at the lumbar spine, femoral neck, and total hip, respectively. In addition, C-telopeptide was suppressed by 26.4% (0.121 to 0.089 ng/mL), and procollagen type I N-terminal propeptide increased by 18.7% (25.2 to 29.9 ng/mL). This was the first report of romosozumab treatment in patient with osteoporosis and HCS in Korea. One year of romosozumab treatment provided substantial gains in BMD with maintaining the last acro-osteolytic status without deteriorating, representing a possible treatment option for HCS.
Keyphrases
  • bone mineral density
  • postmenopausal women
  • body composition
  • cell proliferation
  • total hip
  • dna methylation
  • small molecule
  • rectal cancer
  • binding protein
  • replacement therapy
  • protein protein
  • circulating tumor