METTL3-mediated N6-methyladenosine exacerbates ferroptosis via m6A-IGF2BP2-dependent mitochondrial metabolic reprogramming in sepsis-induced acute lung injury.
Hao ZhangDan WuYanghanzhao WangKefang GuoCharles B SpencerLilibeth OrtogaMengdi QuYuxin ShiYuwen ShaoZhiping WangJuan P CataChang-Hong MiaoPublished in: Clinical and translational medicine (2023)
Neutrophil extracellular traps (NETs), released by polymorphonuclear neutrophils (PMNs), exert a robust antimicrobial function in infectious diseases such as sepsis. NETs also contribute to the pathogenesis and exacerbation of sepsis. Although the lung is highly vulnerable to infections, few studies have explored the role of NETs in sepsis-induced acute lung injury (SI-ALI). We demonstrate that NETs induce SI-ALI via enhanced ferroptosis in alveolar epithelial cells. Our findings reveal that the excessive release of NETs in patients and mice with SI-ALI is accompanied by upregulation of ferroptosis depending on METTL3-induced m6A modification of hypoxia-inducible factor-1α (HIF-1α) and subsequent mitochondrial metabolic reprogramming. In addition to conducting METTL3 overexpression and knockdown experiments in vitro, we also investigated the impact of ferroptosis on SI-ALI caused by NETs in a caecum ligation and puncture (CLP)-induced SI-ALI model using METTL3 condition knockout (CKO) mice and wild-type mice. Our results indicate the crucial role of NETs in the progression of SI-ALI via NET-activated METTL3 m6A-IGF2BP2-dependent m6A modification of HIF-1α, which further contributes to metabolic reprogramming and ferroptosis in alveolar epithelial cells.
Keyphrases
- cell death
- high glucose
- wild type
- diabetic rats
- intensive care unit
- room temperature
- acute kidney injury
- oxidative stress
- endothelial cells
- septic shock
- lipopolysaccharide induced
- infectious diseases
- end stage renal disease
- drug induced
- chronic obstructive pulmonary disease
- high fat diet induced
- chronic kidney disease
- newly diagnosed
- staphylococcus aureus
- skeletal muscle
- body mass index
- ejection fraction
- high resolution
- metabolic syndrome
- single cell
- gene expression
- prognostic factors
- insulin resistance
- lps induced
- inflammatory response
- transcription factor
- weight gain
- peritoneal dialysis
- patient reported outcomes
- mechanical ventilation
- mass spectrometry
- case control