Login / Signup

Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst.

Yinlong ZhuQian LinZhiwei HuYubo ChenYichun YinHassan A TahiniHong-Ji LinChien-Te ChenXiwang ZhangZongping ShaoHuanting Wang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2020)
The oxygen evolution reaction (OER) is pivotal in multiple gas-involved energy conversion technologies, such as water splitting, rechargeable metal-air batteries, and CO2 /N2 electrolysis. Emerging anion-redox chemistry provides exciting opportunities for boosting catalytic activity, and thus mastering lattice-oxygen activation of metal oxides and identifying the origins are crucial for the development of advanced catalysts. Here, a strategy to activate surface lattice-oxygen sites for OER catalysis via constructing a Ruddlesden-Popper/perovskite hybrid, which is prepared by a facile one-pot self-assembly method, is developed. As a proof-of-concept, the unique hybrid catalyst (RP/P-LSCF) consists of a dominated Ruddlesden-Popper phase LaSr3 Co1.5 Fe1.5 O10-δ (RP-LSCF) and second perovskite phase La0.25 Sr0.75 Co0.5 Fe0.5 O3-δ (P-LSCF), displaying exceptional OER activity. The RP/P-LSCF achieves 10 mA cm-2 at a low overpotential of only 324 mV in 0.1 m KOH, surpassing the benchmark RuO2 and various state-of-the-art metal oxides ever reported for OER, while showing significantly higher activity and stability than single RP-LSCF oxide. The high catalytic performance for RP/P-LSCF is attributed to the strong metal-oxygen covalency and high oxygen-ion diffusion rate resulting from the phase mixture, which likely triggers the surface lattice-oxygen activation to participate in OER. The success of Ruddlesden-Popper/perovskite hybrid construction creates a new direction to design advanced catalysts for various energy applications.
Keyphrases
  • room temperature
  • highly efficient
  • high efficiency
  • metal organic framework
  • solar cells