Spectrally encoded single-pixel machine vision using diffractive networks.
Jingxi LiDeniz MenguNezih Tolga YardimciYi LuoXurong LiMuhammed VeliYair RivensonMona JarrahiAydogan OzcanPublished in: Science advances (2021)
We demonstrate optical networks composed of diffractive layers trained using deep learning to encode the spatial information of objects into the power spectrum of the diffracted light, which are used to classify objects with a single-pixel spectroscopic detector. Using a plasmonic nanoantenna-based detector, we experimentally validated this single-pixel machine vision framework at terahertz spectrum to optically classify the images of handwritten digits by detecting the spectral power of the diffracted light at ten distinct wavelengths, each representing one class/digit. We also coupled this diffractive network-based spectral encoding with a shallow electronic neural network, which was trained to rapidly reconstruct the images of handwritten digits based on solely the spectral power detected at these ten distinct wavelengths, demonstrating task-specific image decompression. This single-pixel machine vision framework can also be extended to other spectral-domain measurement systems to enable new 3D imaging and sensing modalities integrated with diffractive network-based spectral encoding of information.