Login / Signup

Topochemistry for Difficult Peptide-Polymer Synthesis: Single-Crystal-to-Single-Crystal Synthesis of an Isoleucine-Based Polymer, a Hydrophobic Coating Material.

Thejus PramodRavichandran KhazeberVignesh AthiyarathKana M Sureshan
Published in: Journal of the American Chemical Society (2024)
Polymers of hydrophobic amino acids are predicted to be potential coating materials for the creation of hydrophobic surfaces. The oligopeptides of hydrophobic amino acids are called "difficult peptides"; as the name suggests, it is difficult to synthesize them by conventional methods. We circumvented this synthetic challenge by adopting topochemical azide-alkyne cycloaddition (TAAC) polymerization of a hydrophobic dipeptide monomer. We designed an Ile-based dipeptide, decorated with azide and alkyne, which arrange in the crystal in a head-to-tail fashion with the azide and alkyne of the adjacent molecules in a ready-to-react orientation. The monomer, on mild heating of its crystals, undergoes regiospecific TAAC polymerization to yield a 1,4-disubstituted-triazole-linked polymer in a single-crystal-to-single-crystal fashion. The solid obtained after evaporation of the monomer solution also maintained crystallinity and underwent regiospecific topochemical polymerization as in the case of crystals. This topochemical polymerization could be studied using different techniques such as FTIR, NMR, DSC, GPC, MALDI, PXRD, and SCXRD. Since the polymer is insoluble in common solvents and hence difficult to coat surfaces, the monomer was first sprayed and evaporated on various surfaces and polymerized on the surface. Such polymer-coated surfaces exhibited water contact angles of up to 134°, showing that this Ile-derived polymer is very hydrophobic and can potentially be used as a coating material for various applications.
Keyphrases