Login / Signup

Correcting density-driven errors in projection-based embedding.

Robert C R PennifoldSimon J BennieThomas F Miller IiiFrederick R Manby
Published in: The Journal of chemical physics (2018)
Projection-based embedding provides a simple and numerically robust framework for multiscale wavefunction-in-density-functional-theory (WF-in-DFT) calculations. The approach works well when the approximate DFT is sufficiently accurate to describe the energetics of the low-level subsystem and the coupling between subsystems. It is also necessary that the low-level DFT produces a qualitatively reasonable description of the total density, and in this work, we study model systems where delocalization error prevents this from being the case. We find substantial errors in embedding calculations on open-shell doublet systems in which self-interaction errors cause spurious delocalization of the singly occupied orbital. We propose a solution to this error by evaluating the DFT energy using a more accurate self-consistent density, such as that of Hartree-Fock (HF) theory. These so-called WF-in-(HF-DFT) calculations show excellent convergence towards full-system wavefunction calculations.
Keyphrases