Login / Signup

From Alkanes to Carboxylic Acids: Terminal Oxygenation by a Fungal Peroxygenase.

Andrés OlmedoCarmen ArandaJosé Carlos Del RíoJan KiebistKatrin ScheibnerAngel T MartínezAna Gutiérrez
Published in: Angewandte Chemie (International ed. in English) (2016)
A new heme-thiolate peroxidase catalyzes the hydroxylation of n-alkanes at the terminal position-a challenging reaction in organic chemistry-with H2 O2 as the only cosubstrate. Besides the primary product, 1-dodecanol, the conversion of dodecane yielded dodecanoic, 12-hydroxydodecanoic, and 1,12-dodecanedioic acids, as identified by GC-MS. Dodecanal could be detected only in trace amounts, and 1,12-dodecanediol was not observed, thus suggesting that dodecanoic acid is the branch point between mono- and diterminal hydroxylation. Simultaneously, oxygenation was observed at other hydrocarbon chain positions (preferentially C2 and C11). Similar results were observed in reactions of tetradecane. The pattern of products formed, together with data on the incorporation of (18) O from the cosubstrate H2 (18) O2 , demonstrate that the enzyme acts as a peroxygenase that is able to catalyze a cascade of mono- and diterminal oxidation reactions of long-chain n-alkanes to give carboxylic acids.
Keyphrases
  • hydrogen peroxide
  • blood flow
  • electronic health record
  • big data
  • heavy metals
  • drug discovery
  • nitric oxide
  • artificial intelligence
  • water soluble
  • data analysis