Weaving Aerogels into a 3D Ordered Hyperelastic Hybrid Carbon Assembly.
Hele GuoQingyang FeiMeng LianTianyi ZhuWei FanYueming LiLi SunFlip de JongKaibin ChuWei ZongChao ZhangTianxi LiuPublished in: Advanced materials (Deerfield Beach, Fla.) (2023)
The development of a three-dimensional (3D) carbon assembly with a combination of extraordinary electrochemical and mechanical properties is desirable yet challenging. Herein, an ultralight and hyperelastic nanofiber-woven hybrid carbon assembly (NWHCA) is fabricated by nanofiber weaving of isotropic porous and mechanical brittle quasi-aerogels. Upon subsequent pyrolysis, metallogel-derived quasi-aerogel hybridization and nitrogen/phosphorus co-doping were integrated into the NWHCA. Finite element simulation indicates that the 3D lamella-bridge architecture of NWHCA with the quasi-aerogel hybridization contributes to resisting plastic deformation and structural damage under high compression, experimentally demonstrated by complete deformation recovery at 80% compression and unprecedented fatigue resistance (> 94% retention after 5000 cycles). Due to the superelasticity and quasi-aerogel integration, the zinc-air battery assembled based on NWHCA shows excellent electrochemical performance and flexibility. A proof-of-concept integrated device is presented, in which the flexible battery powers a piezoresistive sensor, using the NWHCA as the air cathode and the elastic conductor respectively, which could detect full-range and sophisticated motions while attached to human skin. The nanofiber weaving strategy allows the construction of lightweight, superelastic, and multifunctional hybrid carbon assemblies with great potential in wearable and integrated electronics. This article is protected by copyright. All rights reserved.