Login / Signup

Synthesis, Characterization, and Biochemical Impacts of Some New Bioactive Sulfonamide Thiazole Derivatives as Potential Insecticidal Agents against the Cotton Leafworm, Spodoptera littoralis.

Nanees N SolimanM Abd El SalamA A FaddaMarwa Abdel-Motaal
Published in: Journal of agricultural and food chemistry (2020)
A novel series of anticipated biologically active heterocyclic compounds, such as pyrazole, thiazole, pyridine, acrylamide, thiophene, triazolo[1,5-a]pyrimidine, imidazolidine, aminopyrazole, pyrazolo[5,1-c][1,2,4]triazine, triazolo[4,3-a]pyrimidine, benzo[4,5]imidazo[1,2-a]pyrimidine, pyrido[2',3':3,4]pyrazolo[5,1-c][1,2,4]triazine, isoxazole, benzo[4,5]imidazo[2,1-c][1,2,4]triazine, pyrimidine, pyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidine, pyrano[2,3-d]pyrimidine, and chromene derivatives, incorporating a sulfonamide-bearing thiazole moiety suitable to utilize as insecticidal agents were synthesized via a versatile, readily accessible cyanoacetanilide, 2-cyano-N-(4-(N-(thiazol-2-yl)sulfamoyl)phenyl)acetamide (1).The structures of the newly synthesized compounds were elucidated by IR, MS, 1H NMR, 13C NMR, distortionless enhancement by polarization transfer (DEPT), 1H-1H correlation spectroscopy (COSY), heteronuclear multiple bond correlation (HMBC), and heteronuclear single quantum coherence (HSQC) spectral analysis. Toxicological and biochemical parameters and biological aspects of the demonstrated compounds of the synthesized products against the cotton leafworm, Spodoptera littoralis, under laboratory conditions were also investigated. Regarding the determined LC50 and LC90 values, sulfonamides bearing a thiazole moiety, 16a, 8, 28, and 31b, showed the most potent toxic effects with LC50 values of 49.04, 62.66, 78.62, and 94.90 ppm, respectively, and toxicity index of 100%, 78.26%, 62.38%, and 51.68%, respectively.
Keyphrases