Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform.
Sunbin HwangMinji KangAram LeeSukang BaeSeoung-Ki LeeSang Hyun LeeTakhee LeeGunuk WangTae-Wook KimPublished in: Nature communications (2022)
Electronic fibres have been considered one of the desired device platforms due to their dimensional compatibility with fabrics by weaving with yarns. However, a precise connecting process between each electronic fibre is essential to configure the desired electronic circuits or systems. Here, we present an integrated electronic fibre platform by fabricating electronic devices onto a one-dimensional microfibre substrate. Electronic components such as transistors, inverters, ring oscillators, and thermocouples are integrated together onto the outer surface of a fibre substrate with precise semiconductor and electrode patterns. Our results show that electronic components can be integrated on a single fibre with reliable operation. We evaluate the electronic properties of the chip on the fibre as a multifunctional electronic textile platform by testing their switching and data processing, as well as sensing or transducing units for detecting optical/thermal signals. The demonstration of the electronic fibre suggests significant proof of concepts for the realization of high performance with wearable electronic textile systems.