Login / Signup

Remalleable, Healable, and Highly Sustainable Supramolecular Polymeric Materials Combining Superhigh Strength and Ultrahigh Toughness.

Wenwen NiuYou-Liang ZhuRui WangZhong-Yuan LuXiaokong LiuJunqi Sun
Published in: ACS applied materials & interfaces (2020)
To build a sustainable society, it is of significant importance but highly challenging to develop remalleable, healable, and biodegradable polymeric materials with integrated high strength and high toughness. Here, we report a superstrong and ultratough sustainable supramolecular polymeric material with a toughness of ca. 282.3 J g-1 (395.2 MJ m-3) in combination with a tensile strength as high as ca. 104.2 MPa and a Young's modulus of ca. 3.53 GPa. The toughness is even higher than that of the toughest spider silk (ca. 354 MJ m-3) ever found in the world, while the material also exhibits a superior tensile strength over most engineering plastics. This material is fabricated by topological confinement of the biodegradable linear polymer of poly(vinyl alcohol) (PVA) via the naturally occurring dendritic molecules of tannic acid (TA) based on high-density hydrogen bonds. Simply blending TA and PVA in aqueous solutions at acidic conditions leads to the formation of TA-PVA complexes as precipitates, which can be processed into dry TA-PVA composite products with desired shapes via the compression molding method. Compared to the conventional solution casting method for the fabrication of PVA-based thin films, the as-developed strategy allows large-scale production of bulk TA-PVA composites. The TA-PVA composites consist of interpenetrating three-dimensional supramolecular TA-PVA clusters. Such a structural feature, revealed by computational simulations, is crucial for the integrated superhigh strength and ultrahigh toughness of the material. The biodegradable TA-PVA composites are remalleable for multiple generations of recycling and healable after break, at room temperature, by the assistance of water to activate the reversibility of the hydrogen bonds. The TA-PVA composites show high promise as sustainable substitutes for conventional plastics because of their remalleability, healability, and biodegradability. The integrated superhigh strength and ultrahigh toughness of the TA-PVA composites ensure their high reliability and broad applicability.
Keyphrases
  • drug delivery
  • room temperature
  • reduced graphene oxide
  • cancer therapy
  • machine learning
  • visible light
  • deep learning
  • water soluble
  • molecular dynamics
  • big data
  • protein kinase
  • quantum dots
  • energy transfer