Login / Signup

Facile Construction of a Copper-Containing Covalent Bond for Peroxymonosulfate Activation: Efficient Redox Behavior of Copper Species via Electron Transfer Regulation.

Ting ChenZhiliang ZhuHua ZhangYanling QiuDaqiang YinGuohua Zhao
Published in: ACS applied materials & interfaces (2020)
Heterogeneous catalysis can be enhanced through the construction of effective atom connection for rapid electron transport on the catalyst surface. Hence, this study proposed a new strategy for electron transfer regulation to facilitate redox cycle of Cu(II)/Cu(I). The objective was achieved by successful construction of copper-containing covalent bond through the in situ growth of porous g-C3N4 with oxygen dopants and nitrogen defects (O-CND) on CuAlxOy substrate (CuAl@O-CND). On the basis of X-ray absorption fine structure (XAFS) and other characterization results, the facilitated redox behavior of copper species by electron transfer regulation was ascribed to the formation of a C-O-Cu bond on the porous-rich superficial of the catalyst; these covalent C-O-Cu bonds shortened the migration distance of electrons between Cu(II) and Cu(I) via Cu(I)-O-C-O-Cu(II) bridge. The construction of copper-containing covalent bonds in the catalyst resulted in efficient PMS activation for a rapid redox cycle of Cu(II)/Cu(I), triggering a series of reactions involving the continuous production of three highly active species (SO4·-, ·OH and 1O2). The rapid diffusion and transportation of the generated active species from porous structures directly attack typical pharmaceutically active compounds (PhACs), achieving superior catalytic performance. This study provides a new routine to construct a C-O-Cu bond for PMS activation by regulating the electron transfer to accelerate the redox behavior of copper species for environmental remediation.
Keyphrases