Login / Signup

Inhaled JAK Inhibitor GDC-0214 Nanoaggregate Powder Exhibits Improved Pharmacokinetic Profile in Rats Compared to the Micronized Form: Benefits of Thin Film Freezing.

Chaeho MoonSawittree SahakijpijarnEsther Y MaierDavid R TaftMiguel O JaraTuangrat PraphawatvetRachana ManandharNivedita ShettyJoseph W LubachAjit S NarangKarthik NagapudiRobert O Williams
Published in: Molecular pharmaceutics (2024)
Asthma is a common chronic disease affecting the airways in the lungs. The receptors of allergic cytokines, including interleukin (IL)-4, IL-5, and IL-13, trigger the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which involves the pathogenesis of asthma. GDC-0214 is a JAK inhibitor that was developed as a potent and selective target for the treatment of asthma, specifically targeting the lungs. While inhaled GDC-0214 is a promising novel treatment option against asthma, improvement is still needed to achieve increased potency of the powder formulation and a reduced number of capsules containing powder to be inhaled. In this study, high-potency amorphous powder formulations containing GDC-0214 nanoaggregates for dry powder inhalation were developed using particle engineering technology, thin film freezing (TFF). A high dose per capsule was successfully achieved by enhancing the solubility of GDC-0214 and powder conditioning. Lactose and/or leucine as excipients exhibited optimum stability and aerosolization of GDC-0214 nanoaggregates, and aerosolization of the dose was independent of air flow through the device between 2 and 6 kPa pressure drops. In the rat PK study, formulation F20, which contains 80% GDC-0214 and 20% lactose, resulted in the highest AUC 0-24h in the lungs with the lowest AUC 0-24h in the plasma that corresponds to a 4.8-fold higher ratio of the lung-to-plasma exposures compared to micronized crystalline GDC-0214 powder administered by dry powder inhalation. Therefore, GDC-0214 nanoaggregates produced by TFF provided an improved dry powder for inhalation that can lead to enhanced therapeutic efficacy with a lower risk of systemic toxicity.
Keyphrases
  • chronic obstructive pulmonary disease
  • cystic fibrosis
  • lung function
  • high dose
  • allergic rhinitis
  • oxidative stress
  • cell proliferation
  • combination therapy
  • anti inflammatory