Accurate Prediction of the Excited States in the Fully Conjugated Porphyrin Tapes across the Full Spectral Range: A Story of the Interplay between π-π* and Intramolecular Charge-Transfer Transitions in Soft Chromophores.
Rodion V BelosludovDustin E NevonenVictor N NemykinPublished in: The journal of physical chemistry. A (2021)
The ability of density functional theory (DFT) and time-dependent DFT (TDDFT) methods for the accurate prediction of the energies and oscillator strengths of the excited states in a series of fully conjugated meso-meso β-β β-β triple-linked porphyrin oligomers (porphyrin tapes 2-12) was probed in the gas phase and solution using several exchange-correlation functionals. It was demonstrated that the use of the hybrid B3LYP functional provides a good compromise for the accurate prediction of the localized π-π* and intramolecular charge-transfer transitions, thus allowing confident interpretation of the UV-vis-NIR spectra of porphyrin oligomers. The TDDFT-based sum-over-state (SOS) calculations for the porphyrin tape dimer 2 and trimer 3 as well as parent monomer 1 correctly predicted the signs and shapes of the magnetic circular dichroism (MCD) signals in the low-energy region of the spectra.
Keyphrases
- density functional theory
- photodynamic therapy
- energy transfer
- molecular dynamics
- electron transfer
- fluorescence imaging
- metal organic framework
- high resolution
- quantum dots
- drug delivery
- mass spectrometry
- computed tomography
- molecular dynamics simulations
- magnetic resonance
- liquid chromatography
- drug release
- solid state