Ultralong-Life Cathode for Aqueous Zinc-Organic Batteries via Pouring 9,10-Phenanthraquinone into Active Carbon.
Beibei YangYuanyuan MaDuan BinHongbin LuYong-Yao XiaPublished in: ACS applied materials & interfaces (2021)
Organic carbonyl electrode materials have shown a great potential in various rechargeable batteries but limited by the problems of poor cycling and rate performance owing to their high solubility in aqueous electrolytes and low conductivity. To address these problems, the 9,10-phenanthraquinone (PQ)@active carbon (AC) composite fabricated by melting PQ molecules into porous AC is considered as a superstable cathode material for aqueous zinc batteries. The introduction of AC improves the structural stability and restrains the PQ dissolution in an aqueous electrolyte. As a result, the PQ@AC composite electrode delivers a reversible discharge capacity of 150.0 mA h g-1 at a current density of 0.1 A g-1, and it also features an unprecedented cycling performance of 36 000 cycles with a capacity retention of 96.3% at 5 A g-1. Moreover, the Zn2+ and H+ in an aqueous electrolyte are verified to co-insert into the PQ@AC composite electrode using various ex situ characterizations and electrochemical test. This strategy provides a new avenue for organic carbonyl compounds with quinone substructures to improve their electrochemical performance of other batteries.