Login / Signup

Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation.

Ke FanHaiyuan ZouYue LuHong ChenFusheng LiJinxuan LiuLicheng SunLianpeng TongMichael F ToneyMan-Ling SuiJiaguo Yu
Published in: ACS nano (2018)
As one of the most remarkable oxygen evolution reaction (OER) electrocatalysts, metal chalcogenides have been intensively reported during the past few decades because of their high OER activities. It has been reported that electron-chemical conversion of metal chalcogenides into oxides/hydroxides would take place after the OER. However, the transition mechanism of such unstable structures, as well as the real active sites and catalytic activity during the OER for these electrocatalysts, has not been understood yet; therefore a direct observation for the electrocatalytic water oxidation process, especially at nano or even angstrom scale, is urgently needed. In this research, by employing advanced Cs-corrected transmission electron microscopy (TEM), a step by step oxidational evolution of amorphous electrocatalyst CoS x into crystallized CoOOH in the OER has been in situ captured: irreversible conversion of CoS x to crystallized CoOOH is initiated on the surface of the electrocatalysts with a morphology change via Co(OH)2 intermediate during the OER measurement, where CoOOH is confirmed as the real active species. Besides, this transition process has also been confirmed by multiple applications of X-ray photoelectron spectroscopy (XPS), in situ Fourier-transform infrared spectroscopy (FTIR), and other ex situ technologies. Moreover, on the basis of this discovery, a high-efficiency electrocatalyst of a nitrogen-doped graphene foam (NGF) coated by CoS x has been explored through a thorough structure transformation of CoOOH. We believe this in situ and in-depth observation of structural evolution in the OER measurement can provide insights into the fundamental understanding of the mechanism for the OER catalysts, thus enabling the more rational design of low-cost and high-efficient electrocatalysts for water splitting.
Keyphrases
  • electron microscopy
  • low cost
  • high efficiency
  • high resolution
  • metal organic framework
  • hydrogen peroxide
  • small molecule
  • computed tomography
  • gold nanoparticles