Hydrogel-Impregnated Self-Oxygenating Electrospun Scaffolds for Bone Tissue Engineering.
Robin AugustineVasilios K NikolopoulosGulden Camci-UnalPublished in: Bioengineering (Basel, Switzerland) (2023)
Bone defects resulting from trauma, disease, or aging present significant challenges in the clinic. Although biomaterial scaffolds for bone-tissue engineering have shown promising results, challenges remain, including the need for adequate mechanical strength and suitable bioactive agents within scaffolds to promote bone formation. Oxygen is a critical factor for successful bone formation, and low oxygen tension inhibits it. In this study, we developed gelatin methacryloyl (GelMA) hydrogel-impregnated electrospun polycaprolactone (PCL) scaffolds that can release oxygen over 3 weeks. We investigated the potential of composite scaffolds for cell survival in bone-tissue engineering. Our results showed that the addition of an increased amount of CaO 2 nanoparticles to the PCL scaffolds significantly increased oxygen generation, which was modulated by GelMA impregnation. Moreover, the resulting scaffolds showed improved cytocompatibility, pre-osteoblast adhesion, and proliferation under hypoxic conditions. This finding is particularly relevant since hypoxia is a prevalent feature in various bone diseases. In addition to providing oxygen, CaO 2 nanoparticles also act as reinforcing agents improving the mechanical property of the scaffolds, while the incorporation of GelMA enhances cell adhesion and proliferation properties. Overall, our newly developed self-oxygenating composite biomaterials are promising scaffolds for bone-tissue engineering applications.
Keyphrases