Login / Signup

Deciphering How the Viscoelastic Properties of Mussel-Inspired Metal-Coordinate Transiently Cross-Linked Gels Dictate Their Tack Behavior.

Erica LaiBavand KeshavarzNiels Holten-Andersen
Published in: Langmuir : the ACS journal of surfaces and colloids (2019)
In recent years, researchers have incorporated mussel-inspired metal-coordinate cross-links into various types of gels to improve their mechanical properties, particularly toughness and self-healing. However, not much is understood about how the linear mechanical properties of these gels dictate their tack properties. In this study, we use shear rheology and tack tests to explore correlations between linear viscoelastic properties (i.e., plateau modulus, Gp, and characteristic relaxation time, τc) and tack behavior (i.e., peak stress, σmax, and energy dissipation per volume, EDV) of transiently cross-linked hydrogels comprised of histidine-functionalized 4-arm PEG coordinated with Ni2+. By using the Ni2+-histidine ratio and polymer wt % of the transient networks to control their viscoelastic properties, we demonstrate a strong dependence of σmax on Gp and τc. The observed correlation between network dynamics and mechanics under tensile load is in good quantitative agreement with a theoretical framework for σmax, which includes the linear viscoelastic properties as parameters. EDV is also influenced by Gp and τc, and the EDV after reaching σmax is additionally dependent on the polymer wt %. These findings are consistent with previously proposed molecular mechanics of reversible HisxNi2+ cross-links and provide us with new insights into the correlations between bulk mechanics and adhesive dynamics of gels with transient metal-coordinate cross-links.
Keyphrases
  • atomic force microscopy
  • high resolution
  • mass spectrometry
  • hyaluronic acid
  • neural network