Login / Signup

Elevated [CO2 ] alleviates the impacts of water deficit on xylem anatomy and hydraulic properties of maize stems.

Junzhou LiuShaozhong KangWilliam J DaviesRisheng Ding
Published in: Plant, cell & environment (2019)
Plants can modify xylem anatomy and hydraulic properties to adjust to water status. Elevated [CO2 ] can increase plant water potential via reduced stomatal conductance and water loss. This raises the question of whether elevated [CO2 ], which thus improves plant water status, will reduce the impacts of soil water deficit on xylem anatomy and hydraulic properties of plants. To analyse the impacts of water and [CO2 ] on maize stem xylem anatomy and hydraulic properties, we exposed potted maize plants to varying [CO2 ] levels (400, 700, 900, and 1,200 ppm) and water levels (full irrigation and deficit irrigation). Results showed that at current [CO2 ], vessel diameter, vessel roundness, stem cross-section area, specific hydraulic conductivity, and vulnerability to embolism decreased under deficit irrigation; yet, these impacts of deficit irrigation were reduced at elevated [CO2 ]. Across all treatments, midday stem water potential was tightly correlated with xylem traits and displayed similar responses. A distinct trade-off between efficiency and safety in stem xylem water transportation in response to water deficit was observed at current [CO2 ] but not observed at elevated [CO2 ]. The results of this study enhance our knowledge of plant hydraulic acclimation under future climate environments and provide insights into trade-offs in xylem structure and function.
Keyphrases
  • healthcare
  • gene expression
  • risk assessment
  • current status
  • optical coherence tomography