Login / Signup

Enhancing Ionic Transport and Structural Stability of Lithium-Rich Layered Oxide Cathodes via Local Structure Regulation.

Wei LiuJuping XuWang Hay KanWen Yin
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Lithium-rich manganese-based layered oxides (LRM) have garnered considerable attention as cathode materials due to their superior performance. However, the inherent structural degradation and obstruction of ion transport during cycling lead to capacity and voltage decay, impeding their practical applications. Herein, an Sb-doped LRM material with local spinel phase is reported, which has good compatibility with the layered structure and provides 3D Li + diffusion channels to accelerate Li + transport. Additionally, the strong Sb-O bond enhances the stability of the layered structure. Differential electrochemical mass spectrometry indicates that highly electronegative Sb doping effectively suppresses the release of oxygen in the crystal structure and mitigates successive electrolyte decomposition, thereby reducing structural degradation of the material. As a result of this dual-functional design, the 0.5 Sb-doped material with local spinel phases exhibits favorable cycling stability, retaining 81.7% capacity after 300 cycles at 1C, and an average discharge voltage of 1.87 mV per cycle, which is far superior to untreated material with retention values of 28.8% and 3.43 mV, respectively. This study systematically introduces Sb doping and regulates local spinel phases to facilitate ion transport and alleviate structural degradation of LRM, thereby suppressing capacity and voltage fading, and improving the electrochemical performance of batteries.
Keyphrases