An electron-blocking interface for garnet-based quasi-solid-state lithium-metal batteries to improve lifespan.
Chang ZhangJiameng YuYuanyuan CuiYinjie LvYue ZhangTianyi GaoYuxi HeXin ChenTao LiTianquan LinQixi MiYi YuWei LiuPublished in: Nature communications (2024)
Garnet oxide is one of the most promising solid electrolytes for solid-state lithium metal batteries. However, the traditional interface modification layers cannot completely block electron migrating from the current collector to the interior of the solid-state electrolyte, which promotes the penetration of lithium dendrites. In this work, a highly electron-blocking interlayer composed of potassium fluoride (KF) is deposited on garnet oxide Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO). After reacting with melted lithium metal, KF in-situ transforms to KF/LiF interlayer, which can block the electron leakage and inhibit lithium dendrite growth. The Li symmetric cells using the interlayer show a long cycle life of ~3000 hours at 0.2 mA cm -2 and over 350 hours at 0.5 mA cm -2 respectively. Moreover, an ionic liquid of LiTFSI in C 4 mim-TFSI is screened to wet the LLZTO|LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM) positive electrode interfaces. The Li|KF-LLZTO | NCM cells present a specific capacity of 109.3 mAh g -1 , long lifespan of 3500 cycles and capacity retention of 72.5% at 25 °C and 2 C (380 mA g -1 ) with an average coulombic efficiency of 99.99%. This work provides a simple and integrated strategy on high-performance quasi-solid-state lithium metal batteries.