Login / Signup

Thicker Retinal Nerve Fiber Layer with Age among Schoolchildren: The Hong Kong Children Eye Study.

Xiu-Juan ZhangYi-Han LauYu-Meng WangHei-Nga ChanPoemen P ChanKa-Wai KamPatrick IpWei ZhangAlvin L YoungClement Chee Yung ThamChi-Pui PangGuy L J ChenJason C S Yam
Published in: Diagnostics (Basel, Switzerland) (2022)
This study aims to investigate the effect of age on the peripapillary retinal nerve fiber layer (p-RNFL) thickness among schoolchildren. A total of 4034 children aged 6-8 years old received comprehensive ophthalmological examinations. p-RNFL thickness was measured from a circular scan (⌀ = 3.4 mm) captured using spectral-domain optical coherence tomography (SD-OCT). Associations between p-RNFL thickness with ocular and systemic factors were determined by multivariate linear regression after adjusting potential confounders using generalized estimating equations (GEE). The mean global p-RNFL thickness was 106.60 ± 9.41 μm (range: 72 to 171 μm) in the right eyes, 105.99 ± 9.30 μm (range: 76 to 163 μm) in the left eyes, and 106.29 ± 9.36 μm (range: 72 to 171 μm) across both eyes. Age was positively correlated with p-RNFL after adjusting for axial length (AL) and confounding factors (β = 0.509; p = 0.001). Upon multivariable analysis, AL was positively associated with temporal p-RNFL thickness (β = 3.186, p < 0.001) but negatively with non-temporal p-RNFL thickness (β = (10.003, -2.294), p < 0.001). Sectoral p-RNFL was the thickest in the inferior temporal region (155.12 ± 19.42 μm, range 68 to 271 μm), followed by the superior temporal region (154.67 ± 19.99 μm, range 32 to 177 μm). To conclude, p-RNFL increased significantly with older age among children 6 to 8 years old in a converse trend compared to adults. Our results provide a reference for interpreting OCT information in children and suggest that stable p-RNFL thickness may not indicate a stable disease status in pediatric patients due to the age effects.
Keyphrases
  • optical coherence tomography
  • diabetic retinopathy
  • optic nerve
  • young adults
  • physical activity
  • risk assessment
  • magnetic resonance
  • human health