Wound Dressing Hydrogel of Enteromorpha prolifera Polysaccharide-Polyacrylamide Composite: A Facile Transformation of Marine Blooming into Biomedical Material.
Fei JiangZhe ChiYuanyuan DingMeilin QuanYu TianJie ShiFulai SongChenguang LiuPublished in: ACS applied materials & interfaces (2021)
Great endeavors have been dedicated to the development of wound dressing materials. However, there is still a demand for developing a wound dressing hydrogel that integrates natural macromolecules without requiring extra chemical modifications, so as to enable a facile transformation and practical application in wound healing. Herein, a composite hydrogel was prepared with water-soluble polysaccharides from Enteromorpha prolifera (PEP) cross-linked with boric acid and polyacrylamide cross-linked via polymerization (PAM) using a one-pot method. The dual-network of this hydrogel enabled it to have an ultratough mechanical strength. Moreover, interfacial characterizations reflected that the hydrogen bonds and dynamic hydroxyl-borate bonds contributed to the self-healing ability of the PEP-PAM hydrogel, and the surface groups on the hydrogel allowed for tissue adhesiveness and natural antioxidant properties. Additionally, human epidermal growth factor-loaded PEP-PAM hydrogel promoted cell proliferation and migration in vitro and significantly accelerated wound healing in vivo on model rats. These progresses suggested a prospect for the PEP-PAM hydrogel as an effective and easily available wound dressing material. Remarkably, this work showcases that a wound dressing hydrogel can be facially developed by using natural polysaccharides as a one component and offers a new route for the high-value utilization of disastrous marine blooming biomass by transforming it into a biomedical material.