Overlapping and specialized roles of tomato phytoene synthases in carotenoid and abscisic acid production.
Miguel EzquerroEsteban Burbano-ErazoManuel Rodriguez-ConcepcionPublished in: Plant physiology (2023)
Carotenoids are plastidial isoprenoids required for photosynthesis and phytohormone production in all plants. In tomato (Solanum lycopersicum), carotenoids also provide color to flowers and ripe fruit. Phytoene synthase (PSY) catalyzes the first and main flux-controlling step of the carotenoid pathway. Three genes encoding PSY isoforms are present in tomato, PSY1 to PSY3. Mutants have shown that PSY1 is the isoform providing carotenoids for fruit pigmentation, but it is dispensable in photosynthetic tissues. No mutants are available for PSY2 or PSY3, but their expression profiles suggest a main role for PSY2 in leaves and PSY3 in roots. To further investigate isoform specialization with genetic tools, we created gene-edited lines defective in PSY1 and PSY2 in the MicroTom background. The albino phenotype of lines lacking both PSY1 and PSY2 confirmed that PSY3 does not contribute to carotenoid biosynthesis in shoot tissues. Our work further showed that carotenoid production in tomato shoots relies on both PSY1 and PSY2 but with different contributions in different tissues. PSY2 is the main isoform for carotenoid biosynthesis in leaf chloroplasts, but PSY1 is also important in response to high light. PSY2 also contributes to carotenoid production in flower petals and, to a lesser extent, fruit chromoplasts. Most interestingly, our results demonstrate that fruit growth is controlled by abscisic acid (ABA) specifically produced in the pericarp from PSY1-derived carotenoid precursors, whereas PSY2 is the main isoform associated with ABA synthesis in seeds and salt-stressed roots.