Login / Signup

Calculating the Circular Dichroism of Chiral Halide Perovskites: A Tight-Binding Approach.

Sofia ApergiGeert BrocksShuxia Tao
Published in: The journal of physical chemistry letters (2023)
Chiral metal halide perovskites have emerged as promising optoelectronic materials for the emission and detection of circularly polarized visible light. Despite chirality being realized by adding chiral organic cations or ligands, the chiroptical activity originates from the metal halide framework. The mechanism is not well understood, as an overarching modeling framework is lacking. Capturing chirality requires going beyond electric dipole transitions, which is the common approximation in condensed matter calculations. We present a density functional theory (DFT) parametrized tight-binding (TB) model, which allows us to calculate optical properties including circular dichroism (CD) at low computational cost. Comparing Pb-based chiral perovskites with different organic cations and halide anions, we find that the structural helicity within the metal halide layers determines the size of the CD. Our results mark an important step in understanding the complex correlations of structural, electronic, and optical properties of chiral perovskites and provide a useful tool to predict new compounds with desired properties for novel optoelectronic applications.
Keyphrases