Login / Signup

Using Tertiary Sulci to Map the "Cognitive Globe" of Prefrontal Cortex.

Jacob A MillerMark D'EspositoKevin S Weiner
Published in: Journal of cognitive neuroscience (2021)
Stuss considered the human prefrontal cortex (pFC) as a "cognitive globe" [Stuss, D. T., & Benson, D. F. Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95, 3-28, 1984] on which functions of the frontal lobe could be mapped. Here, we discuss classic and recent findings regarding the evolution, development, function, and cognitive role of shallow indentations or tertiary sulci in pFC, with the goal of using tertiary sulci to map the "cognitive globe" of pFC. First, we discuss lateral pFC (LPFC) tertiary sulci in classical anatomy and modern neuroimaging, as well as their development, with a focus on those within the middle frontal gyrus. Second, we discuss tertiary sulci in comparative neuroanatomy, focusing on primates. Third, we summarize recent findings showing the utility of tertiary sulci for understanding structural-functional relationships with functional network insights in ventromedial pFC and LPFC. Fourth, we revisit and update unresolved theoretical perspectives considered by C. Vogt and O. Vogt (Allgemeinere ergebnisse unserer hirnforschung. Journal für Psychologie und Neurologie, 25, 279-462, 1919) and F. Sanides (Structure and function of the human frontal lobe. Neuropsychologia, 2, 209-219, 1964) that tertiary sulci serve as landmarks for cortical gradients. Together, the consideration of these classic and recent findings indicate that tertiary sulci are situated in a unique position within the complexity of the "cognitive globe" of pFC: They are the smallest and shallowest of sulci in pFC, yet can offer insights that bridge spatial scales (microns to networks), modalities (functional connectivity to behavior), and species. As such, the map of tertiary sulci within each individual participant serves as a coordinate system specific to that individual on which functions may be further mapped. We conclude with new theoretical and methodological questions that, if answered in future research, will likely lead to mechanistic insight regarding the structure and function of human LPFC.
Keyphrases
  • functional connectivity
  • prefrontal cortex
  • resting state
  • endothelial cells
  • working memory
  • induced pluripotent stem cells
  • mild cognitive impairment
  • depressive symptoms
  • high density
  • sleep quality