Background NFE2L2 (nuclear factor erythroid-2-related factor-2) encodes a basic leucine zipper (bZIP) transcription factor and exhibits variations in various tumor types, including lung cancer. In this study, we comprehensively investigated the impact of simultaneous mutations on the survival of NFE2L2 -mutant lung cancer patients within specific subgroups. Methods A cohort of 1,103 lung cancer patients was analyzed using hybridization capture-based next-generation sequencing. Results The NFE2L2 gene had alterations in 3.0% (33/1,103) of lung cancer samples, including 1.5% (15/992) in adenocarcinoma and 16.2% (18/111) in squamous cell carcinoma. Thirty-four variations were found, mainly in exons 2 (27/34). New variations in exon 2 (p.D21H, p.V36_E45del, p.F37_E45del, p.R42P, p.E67Q, and p.L76_E78delinsQ) were identified. Some patients had copy number amplifications. Co-occurrence with TP53 (84.8%), CDKN2A (33.3%), KMT2B (33.3%), LRP1B (33.3%), and PIK3CA (27.3%) mutations was common. Variations of NFE2L2 displayed the tightest co-occurrence with IRF2 , TERC , ATR , ZMAT3 , and SOX2 ( p < 0.001). In The Cancer Genome Atlas Pulmonary Squamous Carcinoma project, patients with NFE2L2 variations and 3q26 amplification had longer median survival (63.59 vs. 32.04 months, p = 0.0459) and better overall survival. Conclusions NFE2L2 mutations display notable heterogeneity in lung cancer. The coexistence of NFE2L2 mutations and 3q26 amplification warrants in-depth exploration of their potential clinical implications and treatment approaches for affected patients.
Keyphrases
- copy number
- transcription factor
- squamous cell carcinoma
- end stage renal disease
- mitochondrial dna
- nuclear factor
- chronic kidney disease
- ejection fraction
- genome wide
- newly diagnosed
- stem cells
- toll like receptor
- prognostic factors
- risk factors
- pulmonary hypertension
- dna methylation
- immune response
- dendritic cells
- high grade
- mass spectrometry
- label free
- oxidative stress
- inflammatory response
- optical coherence tomography
- climate change
- dna damage response
- atomic force microscopy
- cell free