Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery.
Yuqing ChenQiu HeYun ZhaoWang ZhouPeitao XiaoPeng GaoNaser TavajohiJian TuBaohua LiXiangming HeLidan XingXiulin FanJilei LiuPublished in: Nature communications (2023)
Low temperatures severely impair the performance of lithium-ion batteries, which demand powerful electrolytes with wide liquidity ranges, facilitated ion diffusion, and lower desolvation energy. The keys lie in establishing mild interactions between Li + and solvent molecules internally, which are hard to achieve in commercial ethylene-carbonate based electrolytes. Herein, we tailor the solvation structure with low-ε solvent-dominated coordination, and unlock ethylene-carbonate via electronegativity regulation of carbonyl oxygen. The modified electrolyte exhibits high ion conductivity (1.46 mS·cm -1 ) at -90 °C, and remains liquid at -110 °C. Consequently, 4.5 V graphite-based pouch cells achieve ~98% capacity over 200 cycles at -10 °C without lithium dendrite. These cells also retain ~60% of their room-temperature discharge capacity at -70 °C, and miraculously retain discharge functionality even at ~-100 °C after being fully charged at 25 °C. This strategy of disrupting solvation dominance of ethylene-carbonate through molecular charge engineering, opens new avenues for advanced electrolyte design.