Login / Signup

Targeting of Ly9 (CD229) Disrupts Marginal Zone and B1 B Cell Homeostasis and Antibody Responses.

Marta CuencaXavier RomeroJordi SintesCox TerhorstPablo Engel
Published in: Journal of immunology (Baltimore, Md. : 1950) (2015)
Marginal zone (MZ) and B1 B cells have the capacity to respond to foreign Ags more rapidly than conventional B cells, providing early immune responses to blood-borne pathogens. Ly9 (CD229, SLAMF3), a member of the signaling lymphocytic activation molecule family receptors, has been implicated in the development and function of innate T lymphocytes. In this article, we provide evidence that in Ly9-deficient mice splenic transitional 1, MZ, and B1a B cells are markedly expanded, whereas development of B lymphocytes in bone marrow is unaltered. Consistent with an increased number of these B cell subsets, we detected elevated levels of IgG3 natural Abs and a striking increase of T-independent type II Abs after immunization with 2,4,6-trinitrophenyl-Ficoll in the serum of Ly9-deficient mice. The notion that Ly9 could be a negative regulator of innate-like B cell responses was supported by the observation that administering an mAb directed against Ly9 to wild-type mice selectively eliminated splenic MZ B cells and significantly reduced the numbers of B1 and transitional 1 B cells. In addition, Ly9 mAb dramatically diminished in vivo humoral responses and caused a selective downregulation of the CD19/CD21/CD81 complex on B cells and concomitantly an impaired B cell survival and activation in an Fc-independent manner. We conclude that altered signaling caused by the absence of Ly9 or induced by anti-Ly9 may negatively regulate development and function of innate-like B cells by modulating B cell activation thresholds. The results suggest that Ly9 could serve as a novel target for the treatment of B cell-related diseases.
Keyphrases
  • immune response
  • bone marrow
  • wild type
  • type diabetes
  • peripheral blood
  • skeletal muscle
  • dendritic cells
  • mesenchymal stem cells
  • cancer therapy
  • metabolic syndrome
  • multidrug resistant
  • nk cells
  • inflammatory response