Contributions of van der Waals Interactions and Hydrophobic Attraction to Molecular Adhesions on a Hydrophobic MoS2 Surface in Water.
Yuechao TangXurui ZhangPhillip ChoiZhenghe XuQingxia LiuPublished in: Langmuir : the ACS journal of surfaces and colloids (2018)
Pushing the boundaries of the investigation of hydrophobic attraction (HA) to the molecular scale readily ensures the collection of experimental results free of secondary effects, thereby facilitating the unraveling of the underlying mechanism by providing clean experimental results that truly reflect the hydrophobic attraction. Regardless of the feasibility of this approach, investigations using this promising method are stagnant due to the difficulties in determining the individual contributions of HA and van der Waals (vdW) interactions at the molecular scale. Here, a novel approach was proposed for the first time to determine the individual contributions of vdW interactions and HA by studying the single-molecule adhesion forces of a neutral oligo ethylene glycol methacrylate copolymer on a MoS2 crystal exposed to different water chemistry. The anisotropic surface properties of MoS2 enabled the partitioning of vdW interactions and hydrophobic attraction in total single-molecule adhesion forces and also enabled determining the contribution of electrostatic interaction (ESI). When the presence of ESI is excluded, the study of single-molecule adhesion forces using single-molecule force spectroscopy (SMFS) revealed that the contribution of vdW interactions to total molecular interactions was smaller than 9 pN. The strong single-molecule adhesion forces of oligo ethylene glycol copolymer on the hydrophobic basal surface of MoS2 demonstrated that HA plays a dominant role with contribution up to 89% to the total single-molecule adhesion force. By utilizing the derived theoretical model, we quantified the individual contribution of each fundamental interaction under a variety of conditions. This study proposed a facile approach to quantitatively clarify the roles of vdW interactions and HA at the molecular scale, which may help assist future experimental and theoretical investigations of hydrophobic (solvophobic) effects and vdW interactions in aqueous solutions.