Detections of bifurcation in a fractional-order Cohen-Grossberg neural network with multiple delays.
Chengdai HuangShansong MoJinde CaoPublished in: Cognitive neurodynamics (2023)
The dynamics of integer-order Cohen-Grossberg neural networks with time delays has lately drawn tremendous attention. It reveals that fractional calculus plays a crucial role on influencing the dynamical behaviors of neural networks (NNs). This paper deals with the problem of the stability and bifurcation of fractional-order Cohen-Grossberg neural networks (FOCGNNs) with two different leakage delay and communication delay. The bifurcation results with regard to leakage delay are firstly gained. Then, communication delay is viewed as a bifurcation parameter to detect the critical values of bifurcations for the addressed FOCGNN, and the communication delay induced-bifurcation conditions are procured. We further discover that fractional orders can enlarge (reduce) stability regions of the addressed FOCGNN. Furthermore, we discover that, for the same system parameters, the convergence time to the equilibrium point of FONN is shorter (longer) than that of integer-order NNs. In this paper, the present methodology to handle the characteristic equation with triple transcendental terms in delayed FOCGNNs is concise, neoteric and flexible in contrast with the prior mechanisms owing to skillfully keeping away from the intricate classified discussions. Eventually, the developed analytic results are nicely showcased by the simulation examples.