Aqueous Cationic Fluorinated Polyurethane for Application in Novel UV-Curable Cathodic Electrodeposition Coatings.
Junhua ChenZhihao ZengCan LiuXuan WangShiting LiFeihua YeChunsheng LiXiaoxiao GuanPublished in: Polymers (2023)
Aqueous polyurethane is an environmentally friendly, low-cost, high-performance resin with good abrasion resistance and strong adhesion. Cationic aqueous polyurethane is limited in cathodic electrophoretic coatings due to its complicated preparation process and its poor stability and single performance after emulsification and dispersion. The introduction of perfluoropolyether alcohol (PFPE-OH) and light curing technology can effectively improve the stability of aqueous polyurethane emulsions, and thus enhance the functionality of coating films. In this paper, a new UV-curable fluorinated polyurethane-based cathodic electrophoretic coating was prepared using cationic polyurethane as a precursor, introducing PFPE-OH capping, and grafting hydroxyethyl methacrylate (HEMA). The results showed that the presence of perfluoropolyether alcohol in the structure affected the variation of the moisture content of the paint film after flash evaporation. Based on the emulsion particle size and morphology tests, it can be assumed that the fluorinated cationic polyurethane emulsion is a core-shell structure with hydrophobic ends encapsulated in the polymer and hydrophilic ends on the outer surface. After abrasion testing and baking, the fluorine atoms of the coating were found to increase from 8.89% to 27.34%. The static contact angle of the coating to water was 104.6 ± 3°, and the water droplets rolled off without traces, indicating that the coating is hydrophobic. The coating has excellent thermal stability and tensile properties. The coating also passed the tests of impact resistance, flexibility, adhesion, and resistance to chemical corrosion in extreme environments. This study provides a new idea for the construction of a new and efficient cathodic electrophoretic coating system, and also provides more areas for the promotion of cationic polyurethane to practical applications.