Heterogeneous-Interface-Enhanced Adsorption of Organic and Hydroxyl for Biomass Electrooxidation.
Peng ZhouXingshuai LvShasha TaoJingcheng WuHongfang WangXiaoxiao WeiTehua WangBo ZhouYuxuan LuThomas FrauenheimXianzhu FuShuangyin WangYuqin ZouPublished in: Advanced materials (Deerfield Beach, Fla.) (2022)
Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) provides an efficient way to obtain high-value-added biomass-derived chemicals. Compared with other transition metal oxides, CuO exhibits poor oxygen evolution reaction performance, leading to high Faraday efficiency for HMF oxidation. However, the weak adsorption and activation ability of CuO to OH - species restricts its further development. Herein, the CuO-PdO heterogeneous interface is successfully constructed, resulting in an advanced onset-potential of the HMF oxidation reaction (HMFOR), a higher current density than CuO. The results of open-circuit potential, in situ infrared spectroscopy, and theoretical calculations indicate that the introduction of PdO enhances the adsorption capacity of the organic molecule. Meanwhile, the CuO-PdO heterogeneous interface promotes the adsorption and activation of OH - species, as demonstrated by zeta potential and electrochemical measurements. This work elucidates the adsorption enhancement mechanism of heterogeneous interfaces and provides constructive guidance for designing efficient multicomponent electrocatalysts in organic electrocatalytic reactions.
Keyphrases
- aqueous solution
- wastewater treatment
- electron transfer
- hydrogen peroxide
- transition metal
- gold nanoparticles
- human health
- minimally invasive
- reduced graphene oxide
- risk assessment
- ionic liquid
- anaerobic digestion
- density functional theory
- climate change
- visible light
- molecularly imprinted
- liquid chromatography
- solid phase extraction