Login / Signup

Toward the Tailoring Chemistry of Metal Nanoclusters for Enhancing Functionalities.

Tatsuya HigakiQi LiMeng ZhouShuo ZhaoYingwei LiSite LiRongchao Jin
Published in: Accounts of chemical research (2018)
Ultrasmall metal nanoparticles (often called nanoclusters) possess unique geometrical structures and novel functionalities that are not accessible in conventional nanoparticles. Recent progress in their synthesis and structural determination by X-ray crystallography has led to deep understanding of the structural evolution, structure-property correlation, and growth modes, such as the layer-by-layer growth in face-centered cubic (fcc)-type nanoclusters, linear assembly of vertex-shared icosahedral units, and other unique modes. The enriched knowledge on the correlation between the structure and the properties has rendered metal nanoclusters a new class of functional nanomaterials. Despite the significant achievements in structural determinations, mapping out the structure-property correlation is still very challenging because of the core-shell structures of nanoclusters (e.g., Au n(SR) m protected by thiolate ligands) with metal atoms partitioned between the core and the shell. In such structures, the core and the surface are entangled and cannot be separately studied because changing the core structure would inevitably change the surface (or vice versa). Thus, it is of great importance to develop the "tailoring" chemistry for structural modification of the core (or surface) while retaining the other parts, in order to achieve fundamental understanding of what part of the nanocluster structure plays what role in the functionalities. In this Account, we summarize some recent work on the strategies to control the atomic structures of metal nanoclusters for tuning their properties, such as stability, optical absorption, excited-state electron dynamics, and photoluminescence, as well as their catalytic reactivity. The development of a ligand-based strategy has permitted the synthesis of structural isomers of nanoclusters with the same size but different functionalities. Successful modification of the core (or surface) structure while maintaining the other components has led us to gain some fundamental understanding of the respective roles of the core and the surface in the nanocluster functionalities. Such "tailoring" chemistry on metal nanoclusters can provide a strong basis for functional nanomaterials consisting of nanocluster components with desired properties. Further development of the tailoring chemistry will guide materials chemists to new directions and tailor-made functional nanomaterials for specific applications.
Keyphrases
  • sensitive detection
  • high resolution
  • fluorescent probe
  • energy transfer
  • label free
  • quantum dots
  • computed tomography
  • mass spectrometry
  • magnetic resonance
  • gold nanoparticles
  • simultaneous determination
  • iron oxide