Replacement of owl monkey centromere satellite by a newly evolved variant was a recent and rapid process.
Hidenori NishiharaRoscoe StanyonHideyuki TanabeAkihiko KogaPublished in: Genes to cells : devoted to molecular & cellular mechanisms (2021)
Alpha satellite DNA is a major DNA component of primate centromeres. We previously reported that Azara's owl monkey has two types of alpha satellite DNA, OwlAlp1 and OwlAlp2. OwlAlp2 (344 bp) exhibits a sequence similarity throughout its entire length with alpha satellite DNA of closely related species. OwlAlp1 (185 bp) corresponds to the part of OwlAlp2. Based on the observation that the CENP-A protein binds to OwlAlp1, we proposed that OwlAlp1 is a relatively new repetitive DNA that replaced OwlAlp2 as the centromeric satellite DNA. However, a detailed picture of the evolutionary process of this centromere DNA replacement remains largely unknown. Here, we performed a phylogenetic analysis of OwlAlp1 and OwlAlp2 sequences, and also compared our results to alpha satellite DNA sequences of other primate species. We found that: (i) OwlAlp1 exhibits a higher similarity to OwlAlp2 than to alpha satellite DNA of other species, (ii) OwlAlp1 has a single origin, and (iii) sequence variation is lower in OwlAlp1 than in OwlAlp2. We conclude that OwlAlp1 underwent a recent and rapid expansion in the owl monkey lineage. This centromere DNA replacement could have been facilitated by the heterochromatin reorganization that is associated with the adaptation of owl monkeys to a nocturnal lifestyle.