Constrained flexibility of parental cooperation limits adaptive responses to harsh conditions.
Jeanette B MossAllen J MoorePublished in: Evolution; international journal of organic evolution (2021)
Parental care is predicted to evolve to mitigate harsh environments, thus adaptive plasticity of care may be an important response to our climate crisis. In biparental species, fitness costs may be reduced by resolving conflict and enhancing cooperation among partners. We investigated this prediction with the burying beetle, Nicrophorus orbicollis, by exposing them to contrasting benign and harsh thermal environments. Despite measurable fitness costs under the harsh environment, sexual conflict persisted in the form of sex-specific social plasticity. That is, females provided equivalent care with or without males, whereas males with partners deserted earlier and reduced provisioning effort. The interaction of social condition and thermal environment did not explain variation in individual behavior, failing to support a temperature-mediated shift from conflict to cooperation. Examining selection gradients and splines on cumulative care revealed a likely explanation for these patterns. Contrary to predictions, increased care did not enhance offspring performance under stress. Rather, different components of care were under different selection regimes, with optimization constrained due to lack of coordination between parents. We suggest that the potential for parenting to ameliorate the effects of our climate crisis may depend on the sex-specific evolutionary drivers of parental care, and that this may be best reflected in components of care.