Nisin is used as a natural food preservative because of its broad-spectrum antimicrobial activity against Gram-positive bacteria. However, free nisin is susceptible to various factors that reduce its antimicrobial activity. Milk protein, a protein derived from milk, has self-assembly properties and is a good carrier of bioactive substances. In this study, lactoferrin-nisin nanoparticles (L-N), bovine serum albumin-nisin nanoparticles (B-N), and casein-nisin nanoparticles (C-N) were successfully prepared by a self-assembly technique, and then their properties were investigated. The studies revealed that lactoferrin (LF) and nisin formed L-N mainly through hydrophobic interactions and hydrogen bonding, and L-N had the best performance. The small particle size (29.83 ± 2.42 nm), dense reticular structure, and good thermal stability, storage stability, and emulsification of L-N laid a certain foundation for its application in food. Further bacteriostatic studies showed that L-N enhanced the bacteriostatic activity of nisin, with prominent inhibitory properties against Listeria monocytogenes , Staphylococcus aureus , and Bacillus cereus , which mainly disrupted the cell membrane of the bacteria. The above results broaden our understanding of milk protein-nisin nanoparticles, while the excellent antibacterial activity of L-N makes it promising for application as a novel food preservative, which will help to improve the bioavailability of nisin in food systems.