Login / Signup

Stronger Intermolecular Forces or Closer Molecular Spacing? Key Impact Factor Research of Gelator Self-Assembly Mechanism.

Si ChenZhihang AnXiaoqian TongYining ChenMeng MaYanqin ShiXu Wang
Published in: Langmuir : the ACS journal of surfaces and colloids (2017)
The benzene ring of low-molecular-weight gelators provides strong intermolecular forces but increases molecular spacing during self-assembly. To explore both of the above influences on the gel properties, we synthesize two gelators (Glu-CBZ and Glu-DPA) consisting of the same terminal long side chain but different aliphatic functional groups. The aliphatic functional groups are carbobenzoxy group and diphenyl phosphate group. The self-assembly driving forces, self-organization patterns, network morphologies, rheological properties, and the influences of solvents are researched through 1H NMR spectra, Fourier transform infrared spectra, field-emission scanning electron microscopy images, rheological characterizations curves, tube-inversion experiment, and calculation of van't Hoff plots. The results show that the carbobenzoxy group of Glu-CBZ makes molecules pack more tightly such that it improves the gel properties during static equilibrium. Whereas the diphenyl phosphate group of Glu-DPA provides stronger intermolecular forces, performing outstandingly during dynamic equilibrium. It is advantageous to further investigate the competitive relationship in gel system between the increased number of functional groups and the consequent steric effect.
Keyphrases