Login / Signup

Design, synthesis, and biological evaluation of novel pleuromutilin derivatives containing benzimidazoles as effective anti-MRSA agents.

Qi-Wen ZhangJie RenJia-Xun LuXiao-Ying ChenXian-Jin HeQi WangZi-Dan ZhouZhen JinZhen-Ling ZengYou-Zhi Tang
Published in: Drug development research (2023)
A series of pleuromutilin derivatives containing benzimidazole were designed, synthesized, and evaluated for their antibacterial activities against Methicillin-resistant Staphylococcus aureus (MRSA) in this study. The in vitro antibacterial activities of the synthesized derivatives against four strains of S. aureus (MRSA ATCC 43300, S. aureus ATCC 29213, S. aureus 144, and S. aureus AD3) were determined by the broth dilution method. Among these derivatives, compound 58 exhibited superior in vitro antibacterial effect against MRSA (minimal inhibitory concentration [MIC] = 0.0625 μg/mL) than tiamulin (MIC = 0.5 μg/mL). Compound 58 possessed a faster bactericidal kinetic and a longer post-antibiotic effect time against MRSA than tiamulin. Meanwhile, at 8 μg/mL concentration, compound 58 did not display obviously cytotoxic effect on the RAW 264.7 cells. In addition, compound 58 (-2.04 log 10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (-1.02 log 10 CFU/mL) in reducing MRSA load in mice thigh infection model. In molecular docking study, compound 58 can successfully attach to the 50S ribosomal active site (the binding free energy is -8.11 kcal/mol). Therefore, compound 58 was a potential antibacterial candidate for combating MRSA infections.
Keyphrases