Login / Signup

A 3D image segmentation for lung cancer using V.Net architecture based deep convolutional networks.

Kamel K MohammedAboul Ella HassaneinHeba M Afify
Published in: Journal of medical engineering & technology (2021)
Lung segmentation of chest CT scan is utilised to identify lung cancer and this step is also critical in other diagnostic pathways. Therefore, powerful algorithms to accomplish this accurate segmentation task are highly needed in the medical imaging domain, where the tumours are required to be segmented with the lung parenchyma. Also, the lung parenchyma needs to be detached from the tumour regions that are often confused with the lung tissue. Recently, lung semantic segmentation is more suitable to allocate each pixel in the image to a predefined class based on fully convolutional networks (FCNs). In this paper, CT cancer scans from the Task06_Lung database were applied to FCN that was inspired by V.Net architecture for efficiently selecting a region of interest (ROI) using the 3D segmentation. This lung database is segregated into 64 training images and 32 testing images. The proposed system is generalised by three steps including data preprocessing, data augmentation and neural network based on the V-Net model. Then, it was evaluated by dice score coefficient (DSC) to calculate the ratio of the segmented image and the ground truth image. This proposed system outperformed other previous schemes for 3D lung segmentation with an average DCS of 80% for ROI and 98% for surrounding lung tissues. Moreover, this system demonstrated that 3D views of lung tumours in CT images precisely carried tumour estimation and robust lung segmentation.
Keyphrases