Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells via Primary Amine Molecular Reaction.
Ligang XuZhaoying HuZhiyuan ZhuZuowei LiangZikang ChenJiexue WangWenzhen LvRunfeng ChenPublished in: The journal of physical chemistry letters (2024)
The inverted perovskite solar cells have drawn considerable attention owing to their low cost, good compatibility, and easy production processes. However, the device performance is still limited by some important factors, such as surface imperfections and interfacial nonradiative recombination losses. Here, N-acetylethylenediamine (N-AE) is introduced to bind to the surface of the perovskite film via an ammonia condensation reaction. This process creates a stable interfacial layer with n-type doping to enhance the open-circuit voltage ( V OC ). Moreover, during post-treatment, N-AE dissolves a portion of the perovskite on the surface, leading to perovskite recrystallization. This process enhances the surface quality of the perovskite film and reduces nonradiative recombination. As a result, the inverted perovskite solar cell exhibits a power conversion efficiency approaching 20%, with a rise in V OC from 0.96 to 1.05 V. More impressively, the unencapsulated devices display excellent stability at 85 °C annealing and retained 88% of the initial PCE for 816 h.