Electrophoresis-Assisted Multilayer Assembly of Nanoparticles for Sensitive Lateral Flow Immunoassay.
Vasily G PanferovNikita A IvanovTony MazzulliDavor BrincVathany KulasingamSergey N KrylovPublished in: Angewandte Chemie (International ed. in English) (2022)
Lateral flow immunoassay (LFIA) is a rapid, simple, and inexpensive point-of-need method. A major limitation of LFIA is a high limit of detection (LOD), which impacts its diagnostic sensitivity. To overcome this limitation, we introduce a signal-enhancement procedure that is performed after completing LFIA and involves controllably moving biotin- and streptavidin-functionalized gold nanoparticles by electrophoresis. The nanoparticles link to immunocomplexes forming multilayer aggregates on the test strip, thus, enhancing the signal. Here, we demonstrate lowering the LOD of hepatitis B surface antigen from approximately 8 to 0.12 ng mL -1 , making it clinically acceptable. Testing 118 clinical samples for hepatitis B showed that signal enhancement increased the diagnostic sensitivity of LFIA from 73 % to 98 % while not affecting its 95 % specificity. Electrophoresis-driven enhancement of LFIA is universal (antigen-independent), takes two minutes, and can be performed by an untrained person.