Login / Signup

Water nanolayer facilitated solitary-wave-like blisters in MoS 2 thin films.

Enze WangZixin XiongZekun ChenZeqin XinHuachun MaHongtao RenBolun WangJing GuoYufei SunXuewen WangChenyu LiXiaoyan LiKai Liu
Published in: Nature communications (2023)
Solitary waves are unique in nonlinear systems, but their formation and propagation in the nonlinear fluid-structure interactions have yet to be further explored. As a typical nonlinear system, the buckling of solid thin films is fundamentally related to the film-substrate interface that is further vulnerable to environments, especially when fluids exist. In this work, we report an anomalous, solitary-wave-like blister (SWLB) mode of MoS 2 thin films in a humid environment. Unlike the most common telephone-cord and web buckling deformation, the SWLB propagates forward like solitary waves that usually appear in fluids and exhibits three-dimensional expansions of the profiles during propagation. In situ mechanical, optical, and topology measurements verify the existence of an interfacial water nanolayer, which facilitates a delamination of films at the front side of the SWLB and a readhesion at the tail side owing to the water nanolayer-induced fluid-structure interaction. Furthermore, the expansion morphologies and process of the SWLB are predicted by our theoretical model based on the energy change of buckle propagation. Our work not only demonstrates the emerging SWLB mode in a solid material but also sheds light on the significance of interfacial water nanolayers to structural deformation and functional applications of thin films.
Keyphrases
  • room temperature
  • quantum dots
  • reduced graphene oxide
  • ionic liquid
  • healthcare
  • drug induced
  • high resolution
  • diabetic rats
  • gold nanoparticles