Characterization and Performance Analysis of Hydrolyzed versus Non-Hydrolyzed Poly(NVF-co-HEA) Hydrogels for Cosmetic Applications.
Maytinee YooyodThanyaporn PinthongSararat MahasaranonJarupa ViyochSukunya RossGareth Michael RossPublished in: Gels (Basel, Switzerland) (2024)
This study explores the synthesis and modification of poly(N-vinylformamide-co-N-hydroxyethyl acrylamide) (poly(NVF-co-HEA)) hydrogels for cosmetic applications. Poly(NVF-co-HEA) hydrogels were produced followed by an acid hydrolysis reaction to produce poly(NVF-co-VAm-co-HEA) hydrogels, introducing poly(vinyl amine) (PVAm) into the structure. This modification considerably alters the hydrogels' properties, yielding materials with over 96% water content, predominantly in the form of non-freezing or free water, which is beneficial in the uptake and release of hydrophilic species. The primary amine groups from inclusion of VAm also improved the mechanical properties, as evidenced by an 8-fold increase in Young's modulus. The hydrogels also possessed pH-responsive behavior, which was particularly noticeable under acidic and basic conditions, where a large decrease in water content was observed (40% to 75% reduction). Characterizing the hydrogels' release capabilities involved using organic dyes of different functional groups and sizes to examine the pH impact on release. The results indicated that hydrolyzed hydrogels interacted more effectively with charged species, highlighting their suitability for pH-responsive delivery. The release of cosmetic active ingredients was also demonstrated through the controlled release of Liquid Azelaic™, specifically potassium azeloyl diglycinate (PAD). Our findings reveal that the hydrolyzed hydrogels exhibit superior burst release, especially under alkaline conditions, suggesting their suitability for cosmetic applications where controlled, pH-responsive delivery of active ingredients is desired. Overall, this investigation highlights the potential of hydrolyzed poly(NVF-co-HEA) hydrogels in cosmetic applications. Their ability to combine high water content with mechanical integrity, along with their pH-responsive release ability, allows for use in cosmetic formulations.