Login / Signup

Electrochemical Generation of Individual Nanobubbles Comprising H2, D2, and HD.

Yinghua QiuHang RenMartin Andrew EdwardsRui GaoKoushik BarmanHenry Sheldon White
Published in: Langmuir : the ACS journal of surfaces and colloids (2020)
The electrochemical reduction of deuterons (2D+ + 2e- → D2) at Pt nanodisk electrodes (radius = 15-100 nm) in D2O solutions containing deuterium chloride (DCl) results in the formation of a single gas nanobubble at the electrode surface. Analogous to that previously observed for the electrochemical generation of H2 nanobubbles, the nucleation and growth of a stable D2 nanobubble is characterized in voltammetric experiments by a highly reproducible and well-resolved sudden drop in the faradaic current, a consequence of restricted mass transport of D+ to the electrode surface following the liquid-to-gas phase transition. D2 nanobubbles are stable under potential control due to a dynamic equilibrium existing between D2 gas dissolution and electrochemical generation of D2 at the circumference of the Pt nanodisk electrode. Remarkably, within the error of the experimental measurement (<6%), the electrochemical current required to nucleate a D2 gas phase in a D2O solution is identical to that for the H2 gas phase in a H2O solutions, indicating that the concentration required for nucleating a D2 nanobubble in D2O (0.29 M) is ∼1.25 times larger than that for a H2 nanobubble (0.23 M), while the supersaturation is ∼300 in each case. We further demonstrate that individual nanobubbles can be electrogenerated in mixed D2O/H2O solutions containing both D+ and H+ at respective individual concentrations well below those required to nucleate a gas phase containing either pure D2 or H2. This latter finding indicates that the resulting nanobubbles comprise a mixture of D2, H2, and HD molecules with the chemical composition of a nanobubble determined by the concentrations and diffusivities of D+ and H+ in the mixed D2O/H2O solutions.
Keyphrases