Login / Signup

Trematodes from Antarctic teleost fishes off Argentine Islands, West Antarctica: molecular and morphological data.

Anna FaltýnkováOlena KudlaiOleksander O SalganskijEleonora M KorolTetiana A Kuzmina
Published in: Systematic parasitology (2022)
In 2014-2015 and 2019-2021, teleost fishes off Galindez Island (Antarctic Peninsula) were examined for trematodes. Combined morphological and molecular analyses revealed the presence of eight trematode species of four families (Hemiuridae, Lecithasteridae, Opecoelidae, Lepidapedidae) from five fish species. Only adult trematodes were found and all of them are Antarctic endemics with their congeners occurring on other continents. The hemiuroids, Elytrophalloides oatesi (Leiper & Atkinson, 1914), Genolinea bowersi (Leiper & Atkinson, 1914), and Lecithaster macrocotyle Szidat & Graefe, 1967 belong to the most common Antarctic species and together with Lepidapedon garrardi (Leiper & Atkinson, 1914) and Neolebouria georgiensis Gibson, 1976 they were recorded as the least host-specific parasites. The originally sub-Antarctic Neolepidapedon macquariensis Zdzitowiecki, 1993 is a new record for the Antarctic Peninsula and Parachaenichthys charcoti (Vaillant), is a new host record. Neolebouria terranovaensis Zdzitowiecki, Pisano & Vacchi, 1993 is considered a synonym of N. georgiensis because of identical morphology and dimensions. The currently known phylogenetic relationships within the studied families are supported, including the polyphyly of Macvicaria Gibson & Bray, 1982 with the future need to accommodate its Antarctic species in a new genus. The validity of M. georgiana (Kovaleva & Gaevskaja, 1974) and M. magellanica Laskowski, Jezewski & Zdzitowiecki, 2013 needs to be confirmed by further analyses. Genetic sequence data are still scarce from Antarctica, and more studies applying integrative taxonomic approaches and large-scale parasitological examinations of benthic invertebrates are needed to match sequences of larval stages to those of well-characterised adults and to elucidate trematode life-cycles.
Keyphrases
  • electronic health record
  • big data
  • young adults
  • machine learning
  • gene expression
  • single cell
  • single molecule
  • genome wide
  • data analysis
  • childhood cancer