Login / Signup

Scanning electron microscopic characterizations of the tongue of the Nubian goat (Capra aegagrus hircus): A specialized focus on its papillary system adaptation to Egyptian environmental conditions.

Mohamed M A AbumnadourFatma EldefrawyKareem MorsyNeveen El-BakaryBasma G Hanafy
Published in: Anatomia, histologia, embryologia (2023)
The current investigation was focused on describing the gross and scanning electron features of the Nubian goat (Capra aegagrus hircus) tongue, with new insights into its papillary adaptation to the Egyptian environment. The elongated tongue had a rostral free and the caudal fixed. The ventral apical surface is classified into the smaller rostral papillary region on the tip and the larger non-papillary region by the U-line of filiform papillae. Functionally, there are two papillary types: mechanical (filiform, conical and lentiform in addition to the longitudinal row of large conical papilla on the lateral of the body) and gustatory (fungiform and circumvallate). Filiform papillae were densely distributed on the dorsal surface of the apex and body, and on the lateral apical border and lateral surface of the body and root, in addition to the ventral surface of the tip. This filiform papillary system gives a raspy appearance to the dorsal surface. The conical and lentiform papillae were limited to the torus linguae. Circumvallate papillae are surrounded by an annular groove and slightly vallum. The lingual root was devoid of any papillae. Lingual papillary subtypes are filiform papillae (elongated and triangular), conical papillae (elongated and oval) and fungiform papillae (round and ovoid). The investigated Nubian goat may have developed a specialized papillary system due to regional differences in the distribution, structure and subtypes of the system, allowing it to adapt to the dried grasses and leaves of trees and bushes that are available in Upper Egypt's dry, hot climate.
Keyphrases
  • clear cell
  • spinal cord
  • palliative care
  • neuropathic pain
  • high resolution
  • electron microscopy
  • spinal cord injury