The role of references and the elusive nature of the chemical bond.
Angel Martin PendásEvelio FranciscoPublished in: Nature communications (2022)
Chemical bonding theory is of utmost importance to chemistry, and a standard paradigm in which quantum mechanical interference drives the kinetic energy lowering of two approaching fragments has emerged. Here we report that both internal and external reference biases remain in this model, leaving plenty of unexplored territory. We show how the former biases affect the notion of wavefunction interference, which is purportedly recognized as the most basic bonding mechanism. The latter influence how bonding models are chosen. We demonstrate that the use of real space analyses are as reference-less as possible, advocating for their use. Delocalisation emerges as the reference-less equivalent to interference and the ultimate root of bonding. Atoms (or fragments) in molecules should be understood as a statistical mixture of components differing in electron number, spin, etc.
Keyphrases