Compensatory role of C3 convertase on the strain difference for C3 protein expression in FVB/N, C3H/HeN and C57BL/6N mice.
Ji Won ParkJi Eun KimMi Ju KangHyeon Jun ChoiSu Ji BaeDae Youn HwangPublished in: Laboratory animal research (2020)
To investigate the role of complement C3 (C3) convertase on the strain difference for C3 protein expression in three inbred mice strains, we compared the levels of C2, C3 and C4 mRNA, as well as C3 protein and C3 convertase activity in the serum and liver tissue of FVB/N, C3H/HeN and C57BL/6N mice. The level of mRNA, inactive form (InACF) and active form (ACF) for C3 showed a regular pattern, which they were higher in the FVB/N and C57BL/6N mice than C3H/HeN mice. However, the level of C3b fragments (C3bα and β) derived from C3 protein were constantly maintained in the liver of FVB/N, C3H/HeN and C57BL/6N mice in spite of the strain difference on the transcriptional and translation level of C3. Especially, a reverse pattern of the level of mRNA, InACF and ACF for C3 was observed on the activity level of C3 convertase activity. The highest level of C3 convertase activity was measured in C3H/HeN mice, followed by C57BL/6N and FVB/N mice. In case of C3 convertase components, the level of C2 mRNA was higher in C3H/HeN mice than FVB/N and C57BL/6 N mice, while levels of C4 mRNA were higher in FVB/N and C57BL/6N mice than C3H/HeN mice. The current study results provide the first scientific evidence that C3 convertase may play complementary role to overcome the strain difference on the C3 protein expression in FVB/N, C3H/HeN and C57BL/6N mice.