Autophagy-mediated metabolic effects of aspirin.
Francesca CastoldiJuliette HumeauIsabelle MartinsSylvie LachkarDamarys LoewFlorent DingliSylvère DurandDavid EnotNoëlie BossutAlexis CheryFanny AprahamianYohann DemontPaule OpolonNicolas SignolleAllan SauvatMichaela SemeraroLucillia BezuElisa Elena BaraccoErika VacchelliJonathan G PolSarah LévesqueNorma BloyValentina SicaMaria Chiara MaiuriGuido KroemerFederico PietrocolaPublished in: Cell death discovery (2020)
Salicylate, the active derivative of aspirin (acetylsalicylate), recapitulates the mode of action of caloric restriction inasmuch as it stimulates autophagy through the inhibition of the acetyltransferase activity of EP300. Here, we directly compared the metabolic effects of aspirin medication with those elicited by 48 h fasting in mice, revealing convergent alterations in the plasma and the heart metabolome. Aspirin caused a transient reduction of general protein acetylation in blood leukocytes, accompanied by the induction of autophagy. However, these effects on global protein acetylation could not be attributed to the mere inhibition of EP300, as determined by epistatic experiments and exploration of the acetyl-proteome from salicylate-treated EP300-deficient cells. Aspirin reduced high-fat diet-induced obesity, diabetes, and hepatosteatosis. These aspirin effects were observed in autophagy-competent mice but not in two different models of genetic (Atg4b-/- or Bcln1+/-) autophagy-deficiency. Aspirin also improved tumor control by immunogenic chemotherapeutics, and this effect was lost in T cell-deficient mice, as well as upon knockdown of an essential autophagy gene (Atg5) in cancer cells. Hence, the health-improving effects of aspirin depend on autophagy.
Keyphrases
- low dose
- high fat diet induced
- cell death
- endoplasmic reticulum stress
- cardiovascular events
- antiplatelet therapy
- signaling pathway
- oxidative stress
- induced apoptosis
- insulin resistance
- healthcare
- type diabetes
- cell cycle arrest
- anti inflammatory drugs
- cardiovascular disease
- public health
- metabolic syndrome
- acute coronary syndrome
- genome wide
- coronary artery disease
- emergency department
- percutaneous coronary intervention
- heart failure
- adipose tissue
- mental health
- social media
- brain injury
- risk assessment
- pi k akt
- glycemic control
- histone deacetylase
- health promotion
- replacement therapy